

Perspectives for System of Systems Engineering in the EU Research & Innovation Programme

Genova, 19 July 2012

Dr. Werner Steinhögl

Unit Complex Systems & Advanced Computing European Commission CONNECT

<u>cordis.europa.eu/fp7/ict/embedded-systems-engineering</u>

System of Systems: drivers, scope, challenges

- Current EU SoS Projects
- Funding opportunities in FP7 Work Programme 2013
- Practicalities of the call for proposals (budgets, deadline, experts)

Sources for this talk

- EU workshop on Advanced Systems Engineering, Brussels 4-5 July 2012
- IDC study Design of Future Embedded Systems towards SoS*
- Credit to my colleagues: Alkis Konstantellos, Max Lemke and Philippe Reynaerts
- □ EU 7th framework programme for research FP7
- Common sense..

*website <u>http://cordis.europa.eu/fp7/ict/embedded-systems-</u> engineering/studies_en.html

System of Systems

Example: Bee Hive

System of Systems

European Commission

Ad hoc definition: System of systems describes the large scale integration of many independent self-contained systems to satisfy global needs or multi-system request

Drivers

 Increasing number of interacting systems with strong connectivity in society and also in industry
 "embedded world meeting internet world"

□ Growing overall **complexity of systems** has triggered a paradigm shift and the need to enhance the classical view of Complex System Engineering towards SoS Engineering

IDC study – Towards SoS*

Four important Technology Areas

- System Interaction with the <u>Web</u> to exploit ubiquitous access to worldwide information from cars, phones and homes
- <u>New computing paradigms such as multi-core technologies</u>
- New ways of Interaction and Cooperation with <u>complex data</u> through visualisation and smart data analysis
- Critical requirements for the design of future <u>dependable</u> <u>systems</u> to guarantee security and safety

*IDC study - Design of Future Embedded Systems towards SoS, website <u>http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/studies_en.html</u>

Scoping of SoS

Maier's Criteria 1998

Five <u>typical</u> dimensions to a System-of-Systems:

- Geographic distribution
- □ **Operational independence** of the elements
- □ Managerial independence of the elements
- Evolutionary development: SoS evolves over time, developing its capabilities as the constituent systems are changed, added or removed.
- Emergent behaviour: SoS itself offers additional services above and beyond the capabilities of the constituent systems (may also exhibit unexpected and potentially damaging behaviours)

But need connectivity and sharing of knowledge to drive SoS towards goals

Paradigm shift through SoS

Hermann Kopetz EU workshop 4-5 July

Characteristic

Scope of System Specification Control Evolution Testing Technology System development

Old-Classic

Fixed (known) Fixed Central Version controlled Test phases Given and fixed Process model New-SoS Not known Changing Distributed Uncoordinated Continuous Uncertain ????

No good model, dynamic evolution, mixed criticality systems - certification!!

Types of SoS

Туре	System	System of Systems	
Man Made	Car, Road	Product range, Integrated Traffic System	verea
	Aeroplane	Airport, Air Traffic Control System	T Pov
	Computer	Distributed IT System	2
	Building	Town, Shopping Mall	
Biological	Animal, Plant	Herd, Forest	
Sociological	Family, Club, School, Local Church	Town, Nation, the Education System, religion	
Environmental	Weather, a river	The eco-system	
Organisational	Company	Supply Chain, Global Enterprise, the Stock Market	
Political	Town Council	National Government, EU, UN	

Controlling Systems -> Influencing Systems

An example:

Air Operations

Make several systems working together and get synergy towards common objectives: end-to-end services, traffic, energy, time, etc.

Implementation of SoS has already started [more or less known as such] Any ICT progress can be transformed rapidly into a benefit.

Source: Jean-Luc Garnier, Thales

Another example

Automotive

From Advanced Control to Systems of Systems

Commission

Automotive

Potential scenario/vision for HORIZON 2020

Future: Autonomous Driving

- System of systems with emergent behaviour
- Mixed criticalities priority to safety and time-criticalities
- Cognitive control learning, simulation capabilities
- Data provided by wireless sensor networks and the IoT
- Powered by a computing continuum

More Examples

Water management - treatment, reservoir management, flow control, pumping, and sewage treatment

Commission

- □ **Traffic control** flow control, signalling, automated highways, driver information, navigation
- Emergency response coordination of ambulance, medical treatment, medical information, disaster management
- □ Air traffic control routing, radar detection, transponder information, satellite tracking, avionics and communications
- Smart Grid more intelligence in distribution network (fossil, wind, PV, storage)
- □ **Railways** signalling and operation across borders
- □ **Satellites** coordination of satellites for imaging/provision of services, e.g. communications
- Distributed control systems
 - Automotive systems increased integration of mixed signal electronics with mechanical components
 Geographical
 - Automation factories and manufacturing

Geographical Distribution?

Process Control – large chemical plants

Need documented experience of exemplars!

IDC study – Towards SoS

Business view

Infrastructure & last node

IDC study – Towards SoS

Market

Embedded Systems market worldwide revenue, 2010-15

Worldwide Embedded Systems Revenue, 2010-2015 (€Million)

Industry	2010	2012	2015	2010–2015 CAGR (%)
Automotive	58,211	78,848	103,289	12.2%
Industrial ⁽¹⁾	132,343	158,739	207,383	9.4%
Healthcare	43,650	54,266	75,048	11.4%
Energy ⁽²⁾	41,275	64,564	180,909	34.4%
Communications	330,024	458,623	614,458	13.2%
Consumer	246,554	284,503	333,050	6.2%
Total	852,057	1,099,543	1,514,137	12.2%

Notes:

(1) Includes aerospace and defence, industrial automation, services (kiosks, PoS, video surveillance, test and measurement), industrial PCs, handheld terminals.

(2) Includes energy consumption points (home/building), renewable energy, electricity T&D

Source: IDC, 2011

Challenges

Technological

Multidisciplinary approach (common language)

Commission

- System Modelling, Simulation (and Verification)
- Emergent Behaviour
- Novel methods, architectures, platforms and theory
- Standards too early, perhaps requirements?
- **Economic**
 - Demonstrating business benefits Quality of Service, availability (consequential loss)
- Societal User Acceptance and Legal
 - Mixing Criticality Security and Safety
- Education

Need for Case Studies!

- Business benefits for industry?
- Performance benefit for SoS owners?

Commission

- Added value of SoS approach across industrial sectors?
- □ Any commonalities in methodology?

Develop methods, architecture platforms and theory for SoS applied to a number of case studies (more than one but not many)

Commission

Develop multi-scale, hierarchical modelling and simulation capability to provide decision support tools for industry to assess the potential benefits of SoS

□ Identify commonalities across case studies

Identify and build the constituency and stakeholders in SoS

Stakeholders

Disciplines: systems engineering, software engineering, mathematics, natural sciences, social sciences, economics..

Stakeholders apart from academia: system integrators, system designers, tool vendors, infrastructure operators, public authorities..

System of Systems: Drivers, scope, challenges

- Current EU SoS Projects
- Funding opportunities in FP7 Work Programme 2013
- Practicalities of the call for proposals (budgets, deadline, experts)

Evolution of SoS(E)

2010-2012	2013	2014-2020
Exploratory	Driven by Use Cases	(H2020) ??
1 st EU call for R&D proposals in SoS(E)	Work programme 2013 launched	WP 2014 in Preparation
4 projects funded (16 M Euro)	Includes slots for SoS (R&D and support) Funding depends on quality of SoS proposals.	SoS topic is under consideration, or linked to themes such as Complex systems, Smart spaces, or Advanced Systems (design and engineering).
3-4 other projects	(Total 72.5 M Euro for	We need convincing
partly doing	four topics, see foil	arguments incl.
SoSE (~ 4M Euro)	on objective 3.4)	market data

On-going SoS Research

Support Actions

Commission

 T-Area SoS: Towards a SoS roadmap Supply-side driven Top-down approach System Engineering US-EU 	 Road2SoS: Towards a SoS roadmap Sector/demand-side driven Bottom-up approach Consulting industry experts Energy, Manufacturing, Crisis Management, Traffic Control
 DANSE: Designing for adaptability and evolution in SoS Engineering SoS engineering approaches Air Traffic Management; Autonomous Ground Transport; Water Treatment & supply 	 COMPASS Comprehensive Modelling for Advanced Systems of Systems Model-based tools Emergency Response; Audio/Video/Home; Automation Ecosystem; Integrated Modular Avionics

Integrated projects

Portfolio Call 7, 2011

Outline

Objective ICT-2013.3.4 Advanced Computing, Embedded and Control Systems

Obj 3.4 d) Systems of Systems

From analysing to controlling behaviour of SoS

Commission

- Analysing and modelling SoS
- Validating new SOS engineering approaches in industrydriven case studies, e.g.:
 - Distributed energy systemes and grids
 - Multi-site industrial production
 - Automated transportation
- Stress generic approaches, elaborate basic concepts, identify open research issues

Constituency building & road-mapping CSAS

 Co-ordinate SoS related projects towards deriving common concepts and research challenges and building constituencies for a European Research & Innovation agenda on SoS

STREPS

. . . .

Research Opportunities in FP7-ICT WP2013

Motivation

Several autonomous systems function as an integrated system to satisfy broader needs

- From design to engineering of SoS
 Embedded world meets the Internet
- □ Take a holistic view of SoS with emergent behaviour
- □ Follow a generic approach across different SoS
- □ Beyond "best effort": satisfy non-functional properties
- □ Find the balance between co-operation and autonomy

ARTEMIS Joint Undertaking

ARTEMIS Call 2012

- ARTEMIS Sub-programmes on embedded systems research
- ARTEMIS Innovation Pilot Programmes:
 - ✓ AIPP1: Critical Systems Engineering Factories
 - \checkmark AIPP2: Innovative Integrated Care Cycles
 - \checkmark AIPP3: Smart environments the Neural System for Society
 - ✓ AIPP4: Production and Energy Systems Automation
 - \checkmark AIPP5: Computing platforms for embedded systems
 - ✓ AIPP6: "Intelligent-Built" environment and urban infrastructure for cities
- Closing: Late summer 1-step submission procedure

Two complementary programmes - FP7 and ARTEMIS JTI:

FP7: targeting new paradigms, foundational research, cutting across applications with mid- to long term horizon.
 ARTEMIS: closer to market targets, application focus, reference architectures, pilot demonstrations, migration pathways for legacy

The Big Picture from 2014 onwards

Horizon 2020

Leadership in Enabling and Industrial Technologies

Commission

- Strategic, technology focused approach
 - With applications in many sectors/ challenges

- A new generation of <u>components and</u> <u>systems</u>: engineering of advanced and smart embedded components and systems
- Next generation <u>computing</u>: advanced computing systems and technologies
- Future <u>Internet</u>: infrastructures, technologies and services
- Content technologies & information management: ICT for digital content and creativity
- Advanced interfaces and robots: robotics and smart spaces
- Micro- and nano<u>electronics</u> and <u>photonics</u>

• Differentiated from:

- Societal challenges: demand led, combining different technologies/ solutions
- European Research Council: Bottom up, Foundational

Research Opportunities in FP7-ICT WP2013

Proposers' Day

Ministry of Science and Higher Education Republic of Poland

ICT Proposers' Day 2012 26-27 September, Warsaw Networking for European ICT R&D

Commission

> Aim of the event:

to prepare for the Calls for proposals of the new ICT WP2013 (1.5 billion € of funding)

- by networking and partnerships building
- by first-hand information from EC officials
- Structure:
- thematic sessions with presentations of proposal ideas
- information stands & bilateral meetings

Registration:

free of charge, open from the end of June 2012

http://ec.europa.eu/ictproposersday

System of Systems in FP7-ICT WP2013

More information

- Call for proposals
 - Deadline for call 10: January 2013
 - Work programme 2013: www.cordis.europa.eu/fp7/ict
 - Background information: <u>www.cordis.europa.eu/fp7/ict/embedded-systems-engineering</u>
 - Proposers' Day, 26-27 Sept.: <u>www.ec.europa.eu/ictproposersday</u>
 - For specific questions: werner.steinhoegl@ec.europa.eu
- Call for evaluators: Please register in our database www.cordis.europa.eu/emmfp7

Wanted: Experts in SoS, SoSE and in related enabling technologies such as simulation, modeling, software engineering, dependability & real time, large scale /complex systems, control engineering, optimisation,..

Conclusions

- Research opportunities for SoS(E) in the European ICT work programme 2013. Important:
 - Link research to use cases
 - Involve industry
 - Emphasize ICT content
 - Explain added value of the SoS approach
- Think of SoS success stories and disseminate them
- Contribute to networking and roadmapping activities of the two running support actions T-AREA-SoS and Road2SoS
- Future: Evolution of the area SoS(E) in the EU programme depends on the success of the activity
- Send us some good proposals..